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The calculation of the principal mean-flow characteristics and the 
distribution of the fluctuating quantities are examined for the case of 
turbulent flows of nonlinear Stokes fluids with a given characteristic 
equation. 

The most  genera l  form of the cha rac te r i s t i c  equa-  
t ion for f luidity may be wr i t ten  as [1 -3 ]  

T. = a6 .  -4- ~ e. + v e~%, (1) 

where a ,  fl, and y are  functions of the three invar ian ts  
of the s t r a i n - r a t e  tensor  and the thermodynamic  state.  

The deformat ion behavior  of any medium mus t  
sat isfy  ce r ta in  conditions.  A medium whose cha rac -  
t e r i s t i c  equation sa t i s f ies  the Stokes postulates  is 
usual ly  called a Stokes fluid. Stokes fluids do not 
exhibit  "memory." For  these fluids Eq. (1) has the 
form 

t ~ ] = ( - - P + a * ) 6 , i + ~ e ~ j +  yei~ek i, (2) 

where p is the thermodynamic  p re s su re ,  and ~* is 
a ce r ta in  function of the invar ian ts  of the s t r a i n - r a t e  
tensor ,  which in accordance with Stokes'  fourth 
postulate [3] vanishes  at eij = 0. In the case of in-  
compress ib le  viscous fluids p is inde te rmina te  and, 
consequently,  any defini t ion of p r e s s u r e  is valid that 
does not contradict  Stokes' fourth postulate.  Usually, 
p is assumed to coincide [4] with the mean  p r e s s u r e  

= --I1T/3 , with p and p differing s ignif icant ly  only in 
such rapidly  developing p rocesses  as, for example,  
explosions.  For  the case of incompress ib le  fluids 
Eq. (2) gives the re la t ion  for the p r e s s u r e  and mean  
p r e s s u r e  

(p - -  3~ = V e/k e~i, (3) 

whence it is c lear  that p = p ff and only if y = 0. 
Thus, by adopting the hypothesis  that p = ~, we 
confine ourse lves  to the case of a quas i - l i nea r  
re la t ion  between the s t r e s s  t ensor  and the s t r a i n - r a t e  
tensor .  The coefficient fl for  an incompress ib le  fluid 
can be r ep resen ted  in the form of a power se r i e s  
in the second invar i an t  

= [~o -t- [~, I s + [~ I~ + . . . .  (4) 

Taking the f i r s t  two t e rms  of the expansion on ly  
( thereby l imi t ing  the region of shear  values eonsid-  
ered) and using cus tomary  notation, 

xu  -~ - -  P 6u + (~ - -  ~s Is) eu, (6 )  

where the d imens ions  of # are  M / L T  and of #2 are 
MT/L~ 

Equation (6), which descr ibes  the flow of pseudo- 
p las t ic  and di latant  fluids,  was used in [5]to invest igate  
s tabi l i ty.  

To close the sys tem of Reynolds equations,  as d i s -  
t inct  f rom the phenomenological  P rand t l -Bouss inesq  
theory, we include the equations for the var ia t ion  
of the Reynolds s t r e s s e s .  This pe rmi t s  a detai led 
examinat ion of the f luc tuat ing-mot ion cha rac te r i s t i c s  
and its effect on the mean  motion. We use the Reynolds 
s t r e s s  equations,  reduced to second moment  ba l -  
ance equations by introducing ce r ta in  approximations 
based on Kolmogorov 's  ideas [7]. This or a s i m i l a r  
method was used successfu l ly  to calculate  the char -  
ac te r i s t i cs  of turbulent  flows in pipes and channels,* 
boundary l aye r s  [17], two-phase flows [12], and mag-  
netohydrodynamic flows [13-16]o Its g rea t  advantage 
is that i t  can read i ly  be extended to the calculat ion 
of the cha rac te r i s t i c s  of turbulent  flows when the 
turbulence  is influenced by var ious  external  fac tors .  

The method of obtaining the Reynolds s t r e s s  equa-  
t ions is well known [8]. Using Eq~ (6) we obtain the 
following sys tem of equations in a Car tes ian  coordi -  
nate sys tem** 

0 [--~- + 0u,-~l 0 

[ 0 .  N I  (0.,p. + 0.,p. / - 
- -  P* [ ax i + axz ] + \ Ox, ax/ ] 

0 [ Z '  Ou~u:] § 

0 - Out Ou i 
+ p ~ u~u:ua + 2 (~, - -  ~s 12) Ox, Ox~ 

- -  (u;f~ + uJ:) = O, ( 7 )  

where 

i, ], a = l , 2, 3; p , = p + ~t~ ~--~a u a . 

P = ~ - - ~ s l s .  (5) 

Thus, the cha rac te r i s t i c  equation, which we will 
continue to use and whose region of applicabil i ty can 
be de te rmined  only by exper iment ,  becomes 

*These studies are l is ted in the monograph by 
Monin and Yagiom [8], and in papers  by Rotta [9] 
and Levin [10, 11]. 
**Following Lumley [6], we assume that 12 = I-2. 
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Equations (7) and the cor responding  equations 
for a l i nea r  fluid [10] differ in t e rms  containing the 
second v i scos i ty  P2. 

Here, the ro le  of p r e s s u r e  is played by the non-  
isot ropic  shear -dependen t  function p . .  When i = j we 
obtain the balance equations for the f luctuation energy  
pe r  uni t  volume in the i d i rec t ion  

p : o ( - -  p u~u a - ~ -  -0~ - -  

- ~ -  ~ ?-g , ,  - p ,  3~ +(~ - ~ 7 ~ ) x  

x(a . '?  o : ,  

21 ~,x. Ou~ ] (~-~&)~:-.. - , ,t ,  = o. ( 8 )  

The physical  s ignif icance of the t e rms  r ema ins  as 
before [8], but the diss ipat ive  t e rm  has a more  com- 
pl icated form.  

As before [9, 10], we assume the approximate 
val id i ty  of the Kolmogorov hypothesis [7], i .e. ,  the 
d iss ipa t ion  per  uni t  mass  of fluid and other  charac -  
t e r i s t i c  quant i t ies  depend only on the tu rbulen t  energy 

and the turbulence  scale  1 .* 
We make the following s e m i e m p i r i c a l  approxima-  

t ions for the diss ipat ive  t e r m  and for the second 
moments  " p r e s s u r e - s p a t i a l  veloci ty der iva t ives"  [9] 

3 

Ox~ 3 l 2 l 2 '  

1 
- -  p ,  

p 

Ox a Ox a 
3 

2 6d ~_ 

1 O l ,  l i _ _  
- - -  p ,  

9 Ox~ 

\ Ox: + Ox~ ] = - - 7 -  

uiu] + ( , - , , ~ ) c ,  ~ ,  (9) 

I 

2 U i  

k l  - -  2 3 

1 

2 k ( u , u / - - ~ , , ] E ) .  (10) 

Constants c and c I are obtained from Laufer's exper- 
iments [17], while constant k must be determined 
experimentally for fluids with different values of #2~ 

As Laufer's experiments show, turbulent diffusion 
of pulsation energy is important only near the axis, 
i.e., in a flow region of secondary importance for 
many problems owing to the fullness of the turbulent 
profile. Disregarding this flow region, we neglect the 
corresponding terms in Eqs. (7). After substituting 
relations (9) and (i0) into Eqs. (7), we obtain a system 
of second-moment balance equations (without taking 

*The scale problem is not cons idered  in this paper .  

ex terna l  forces  into account) 

- ( Ou~u i 0 O~a 
Ot + U~ ~ u~u: + uiu ~ ~ --  .~ 

+ , , ,oo  Iv , -  ] 
oxo\ ~ ]  + 

l 

+ l k u ~ u : - - - ~  

3 

2 ~ 2 uiu_~: __ 
+ ~ c ~,: - y  + (,: - ,~ T~) c~ t ~ 

-o-g,]+ 

m a.,.~] 
a ( v - - , ~ )  =o,  

Ox~ Ox~ J 
(11) 

together  with the Reynolds equations,  which in our  
case have the form 

P \  at + 5 - o ~ + u o ~  - axe+ 

o(  + ooo) 

oUo =o. (12) 
8x~ 

This sys tem can be used to de te rmine  the pr inc ipa l  
mean  and fluctuation cha rac te r i s t i c s  of tu rbulen t  pipe 
flows. It should be kept in mind  that sys tem (11)-(12) 
is closed with respec t  to the f i r s t  and seeondmoments ,  
but the problem of calculat ing the flow cha rac te r i s t i c s  
as functions of the coordinates  can be completely 
solved only if the scale  of turbulence  l,  which, gener -  
al ly speaking, is  a function of the p r inc ipa l  invar ian t s  
of the s t r a in  ra te  tensor ,  is specified. 

A special  feature  of this method (using the equa- 
t ions for the change of Reynolds s t r e s se s  to close the 
sys tem of Reynolds equations) as compared with the 
method based on the P rand t l -Bouss inesq  hypothesis is 
that much more  informat ion  on the na ture  of the fluC- 
tuat ion component can be obtained s ince the fluctuation 
cha rac te r i s t i c s  of the flow are  calculated direct ly .  
Moreover,  it  is possible  to make fu l le r  allowance for 
the effect of the f luctuating mot ion on the mean  flow 
cha rac t e r i s t i c s .  Thus, for example,  in the case of 
quas i -p lane  turbulent  pipe flow, by means  of the 
P rand t l -Bouss ine sq  hypothesis we can approximate  
only the shear  s t r e s s e s  -u '~  = 121d~/dyl'dU/dy, without 

e i ther  obtaining informat ion  on the no rma l  s t r e s s e s  
or a quanti tat ive es t imate  of the i r  d i rec t  effect on the 
in tegra l  cha rac te r i s t i c s .  We can also calculate com- 
ple te ly  the s ingle-poin t  second moments  uv, uw, vw, 
u 2, v 2, w ~, and the f luctuation energy E and show thei r  
effect on the mean-f low cha rac te r i s t i c s .  F r o m  Eqs. 
(11) and (12), neglect ing the effect of viscous diffu- 
sion on energy t r ans f e r  and us ing the d imens ion less  
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quantities R,,* Rz, R , ,  and N, we obtain the following 
equations for  the principal  fluctuation charac te r i s t i c s :  

velocity fluctuations is found to be 

/ t o  
R~ = (20) 

u~ = ~ = o; (~) / ~ V ~  

~, ~ R ,  
a 

1 

x d ~ _2 _~ ; (14) 
21~N Rt + k R e + c i ( I + N R ~ )  

dy ~ 

i__ 

v, k R e + o ( i + N R t )  / R ,  
a 

_2 2 d 2 _2 
+ NR, ) + c Re -I- l ~ N ~ Rt x V ay o 

X 

u v  (i 02 Cl 

d ~ 2 J -  " ~R, 
2I~N - -  Rl + k Re + cl (I + NRt ) 

dy 2 

1 ~ -  (k - -  c) Re x 

; (16) 

~ b  

V ,  

In our  case, co r r ec t  to R~ the fluctuation energy  
balance equation can be expressed  in the following 
dimensionles s form:  

2 (k -- c) Rt 2 Re 
- -  _ 2  

1 
X t d ~ 9 _2 -I 

Ll ~ N-:--=~i + k Re + Ci(1 -t-NRi) J ay o 

_2 d 2 _2 
= C l ( I  ' 7- NRt) r c Re + l~ N -d-~y ~ Rt x 

2(~--c) R e 

• 21,N + 
dy ~ 

(21) 

The f i r s t  integral  of the mean-mot ion  equation 
(12), wri t ten in t e rms  of dimensionless  complexes,  
reduces  to 

l 2N d *  _2 _2 T Rl)  dy ~ R t + k R e + O ( 1  ' N 
X .X 

2l' N ~y~Rt + k Rz + ci (1 + NRI ) 

I 

l Re �9 m 7 

_2 ~ R, 
a 

[k Re + cx (1 + NRl )1 

1/~ RE 
~ m  

v, - ~ R ,  
a 

(17) 

(18) 

F r o m  Eq. (16) the following relat ion iS obtained 
for  the turbulent and molecu la r  t r ans fe r  coefficients 

_ - -uv  _ R ~  c l ( I + N R t ) +  

dy 

+ cRe + 2 1 ~ N  d2 -~ 3 ~ f i R t x  

(k - -  c) Re ] 
dz 2 _2 " 

(19) 

FrOm Eqs. (16), (17), and (14) the single-point  
cor re la t ion  coefficient for  the horizontal  and vert ical  

*RI = (12/v)(d~/dy) is the local  Reynolds number  
f i r s t  introduced by L. G. Loitsyanskii  [18], R l = R l / l  2. 

F 

_2 R2 |c~ (t i% (I + NR~) + [ 
__2 

+ NRt) + 

_ 2  
+ c R E  + l~N 2~d* Rt x 

& 

2/2 N d ~  _2 -~ Rl + kRe + ci(1 + NRl) ay, 

(22) 

With the numer ica l  solution of Eq. (21) for  given 
empir ica l  constants RE = RE(R/,N) can be determined.  
Using this and specifying l ,  f rom (22) we can find 
the local Reynolds number  R l = RI ( I ,N)  for  given 
R . .  Knowing R l and R E, f rom (14)-(20) we find the 
unknown fluctuation charac te r i s t i c s  and also, with 
a view to determining the local Reynolds number,  
we find the mean velocity distr ibution by integrat ing 
the equation 

dU v R ~y -- ~-  ,. (23) 

Considering only the turbulent core of the flow, 
where RE and R l are large, at small Reynolds num- 
bers we neglect the viscous dissipation of fluctuation 
energy as compared with the Kolmogorov dissipa- 
tion, i.e., terms containing ci. Here, we assume that 
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Fig. 1. Velocity defect curves for: 1) M/R3, = 0; 2) 10-s; 
3) - 1 0  -5 . 
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Fig. 2. Variation of the energy cf the fluctuating 
components for: 1) M/R3, = 0; 2) 10-5; 3) -10-5;  

4) 10-4; 5) -10  -~. 
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the d i s s ipa t ion  a s s o c i a t e d  with s h e a r  v i s cos i t y  at  
l e a s t  does not exceed the d i s s ipa t ion  a s s o c i a t e d  with 
o r d i n a r y  v i scos i ty .  

We have to evaluate  the coeff ic ient  k. To s impl i fy  
the ca lcu la t ions ,  we take the Prand t l  mix ing  length 
as  the s ca l e  l ,  us ing  i t  only to e s t i m a t e  k. Then the 
e x p r e s s i o n  fo r  the turbulent  f r i c t ion  with the a s s u m e d  
cons t r a in t s  

I de -~ 
N R, - =  delda t ,1+ • 

1 l---* N I~ X 
x l q -  k R ~  

! 3 

• +kS @~ ~ + T ~ _ g ~ , m  

should coinc ide  a t  N = 0 with the P rand t l  fo rmula ,  
whence fol lows the condit ion that  mus t  be s a t i s f i ed  by 
the coeff ic ients  k and c at  l = ~<y: 

3 

_ c 1. (24)  

We wil l  cons ide r  the mot ion  of a f luid for  which 
N/RE << 1. In this  case ,  to ca lcu la te  the unknown 
c h a r a c t e r i s t i c s  of the mean  and f luctuat ing mot ion  
we employ  the m e t h o d  of succe s s ive  approx ima t ions .  

In the z e r o - o r d e r  approx imat ion  (with N = 0) the 
c h a r a c t e r i s t i c s  coincide with those  obtained by Levin 
[10] for  a l i n e a r  p l ane -channe l  flow. Then, confining 
ou r se Ives  to the f i r s t  powers  of the p a r a m e t e r  N, 
in f i r s t  approx imat ion  the unknown c h a r a c t e r i s t i c s  
a r e  given by 

~ '~176 
X 

x ( ,o-{-t1/ ,  

- - ( # - s  x 
O, \ V, / o 

v, \ v, o 

= i -p (M)  i 
v o ~ -  3--~l) 25-}-2 , 

V, o x 

d~l d~l , o 

(25) 

where F(M)= (M/R3,)(cl/3/k>Q[I/~73(I- ~})I/Z], M = 

= (#2/p3)Tw, ~7 = yv,/v is a universal coordinate. 
In first approximation, Eqs. (21) and (22) have the 

form 

Re=Re, I+F(M) (3--~) 1 1 - - 2 c  ' 

The ca lcu la t ion  p r o c e s s  can be extended to any 
number  of s u c c e s s i v e  approx imat ions .  We l i m i t  o u r -  
s e lves  to the f i r s t  approximat ion .  Calcula ted  cu rves  
showing the k ine t ic  energy  of the f luctuat ing c o m -  
ponents  and the ve loc i ty  defec t  in the flow co re  a r e  
p r e s e n t e d  in F igs .  1 and 2. F r o m  these  f igures  i t  i s  
c l e a r  that  the o v e r - a l l  v i s cos i t y  effect  r educes  e i the r  
t o t h e  addi t ional  d i s s ipa t ion  (v 2 > 0) o r  t o the  addi t ional  
genera t ion  (v2 < 0) of pu l sa t ion  energy.  Accord ing ly ,  
the mean  veloci ty  prof i le  is  e i the r  l a m i n a r i z e d  o r  
becomes  fu l le r .  These  effects  a r e  man i fe s t ed  s t rong ly  
in the lower  pa r t  of the turbulen t  co re  and e x t r e m e l y  
weakly  in the cen t ra l  reg ion  (at  l e a s t  at  the ca lcu la ted  
values  of the p a r a m e t e r  M/RS.). 

F o r  ve ry  s m a l l  ~? the t h e o r e t i c a l  r e s u l t s  p r e s e n t e d  
should be t r e a t e d  caut iously ,  s ince  at the values  of 
M/R3. in ques t ion the f i r s t  approx imat ion  fo r  ca l cu -  
la t ing  the c h a r a c t e r i s t i c s  is  c l e a r l y  inadequate  n e a r  
the wal l s  and, accord ing ly ,  the p a r t s  of the curves  
n e a r  the wal l s  a r e  m e r e l y  i l l u s t r a t i ve .  

NOTATION 

Tij and 6ij a r e  the s t r e s s  t e n s o r  and the s t r a i n - r a t e  
t enso r ;  I is  the symbol  common to the t h r e e  i n v a r i -  
ants  of e i j ;  6ij is  the K r o n e c k e r  del ta ;  ~ is  the mean  
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velocity; u, v, and w are the velocity fluctuation com- 
ponents; x i are the Cartesian coordinates; p, t, and F i 
are the density, time, and body force components, 
respectively; k, c, and cl are the empirical constants 
determined from Laufer's experiments [17]; N = 
= ~,v2/a 4, where a is the half-width of the channel; 
~w is the wall friction; R E = l ( E ) l / 2 / v  is the energy 
Reynolds number; R ,  = v , a / v  is the dynamic Reynolds 
number. 
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